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Abstract. The propagator for a charged, anisotropic harmonic oscillator in a constant 
magnetic field is computed, Making use of this an explicit expression is given for the path 
integral to an action with generalised memory recently considered in the literature. 

1. Introduction 

The action of a charged, anisotropic harmonic oscillator in a constant magnetic field is 

S[x] = lop d t  4m[(x2 + y2  + 2’) - (w:x’+ w;,y* + w Tz’) + w ( x j ,  - yx)]. ( 1 )  

Here m denotes the mass, w,, U,, and w ,  are the oscillator frequencies along the x, y ,  
and z directions, and w is the cyclotron frequency. The external constant magnetic 
field has been chosen to point in the z direction. The propagator is given by the path 
integral 

The action ( 1 )  describes any self-oscillatory charged system in the limit of small 
oscillations, which is subjected to an attractive directionally dependent force and to 
a constant magnetic field. To give an example, consider the atomic truncs of an 
anisotropic metal lattice in an external constant magnetic field. Thus various applica- 
tions are at hand. As far as we know, the propagator (2) has not so far been computed. 
Cheng (1984) finds a partial result and he also shows that ( 2 )  is related to the propagator 
of a one-dimensional time-dependent forced oscillator with generalised memory. This 
is achieved by performing the integrations with respect to the z and x coordinates. 
We are going to evaluate ( 2 )  directly extending the results of Cheng (1984). In particular 
an explicit expression of the above mentioned memory integral easily follows, see 
remark. Special cases of (2) are treated in the literature. In particular, see Jones and 
Papadopoulos (1971) for the isotropic case w, = w, = w,. 
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2. Computation of the propagator 

Since ( I )  is quadratic, the propagator ( 2 )  factorises: 

K(xB,  xo; P )  = F ( P )  exp{iilh)S[xl) (3) 

cf Papadopoulos (1978), where S[X] is the classical (stationary) action along the 
classical path X and F ( P )  denotes the normalisation factor. Since the original problem 
does not contain a memory term the latter follows from S [ 2 ]  computing the Van 
Vleck-Morette determinant 

(4) 

The equations of motion determining the classical path are 

x + w’,x = +my,  y + w ; y  = - wx,  z + w ; z  = 0. ( 5 )  

From the characteristic polynomials one gets the frequencies w ,  for the z coordinate 
and 

A t  = $(U’ + w ’, + U;, )  * i[( w * + w s  + w:, ) * - 4w2,w;,]”* (6) 

for the coupled x and y coordinates. Thus z (  t )  is a linear combination of sin( w,t)  
and cos(w,t), and x( t )  and y( t )  are linear combinations of sin(A,t) and cos(A,t). 
They are fixed by the boundary conditions xo = r(0) and x p  = x(p) .  

Making use of the equations of motion one sees that 

~ [ d ]  = $m(Xpip - ioio). 

S[X] = S[Z]+ S[X, jq 

S[Z] =tm[wz/sin(o,p)][(z:,+ z i )  cos(w,p) -2zozp] 

(7) 

Therefore, 

(8) 

where 

(9) 
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a6 = [ (U’ ,  - w3/w]{2-[(w2+ ws,+ w3/wxw, ]  

Xsin(A+p) sin(A-p) - 2  cos(A+P) cos(A-P)}. 

Hence, by (4), the normalisation factor follows 

Combining (8)-( 11)  the computation of the propagator according to (3) is accom- 
plished. 

Remark. According to Cheng (1984) one gets 

where 

mw, ) “ 2 e x p (  imw, 
27rih sin(w$) 2A sin(w$) KUJ; (Zp ,  zo ;  P )  = 

and the path integral 

with the external force 

f( t )  = [mww,/sin(w,p)][xo cos w,(P - t )  -xp cos(w,t)] 

M ( t )  =[2w2w,/sin(w,p)]y(r) cos[w,(/3-t)] d s y ( s )  cos(w,s). (15) 

(14) 

and the memory potential 

Comparing (3) with (12) one obtains 
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